Announcing the availability of Feathr 1.0
Today, we are excited to announce the much-anticipated availability of the OSS Feathr 1.0. Read more
Today, we are excited to announce the much-anticipated availability of the OSS Feathr 1.0. Read more
The team at Pieces shares the problems and solutions evaluated for their on-device model serving stack and how ONNX Runtime enables their success. Read more
Make large models smaller and faster with OpenVino Execution Provider, NNCF and ONNX Runtime leveraging Azure Machine Learning. Read more
Together with our colleagues at LinkedIn, we are happy to announce that Feathr is joining the LF AI Data Foundation, an umbrella foundation of the Linux Foundation supporting open source innovation in AI and data. Read more
Choosing which machine learning model to use, sharing a model with a colleague, and quickly trying out a model are all reasons why you may find yourself wanting to quickly run inference on a model. You can configure your environment and download Jupyter notebooks, but it would be nicer if there was a way to Read more
Scale, performance, and efficient deployment of state-of-the-art Deep Learning models are ubiquitous challenges as applied machine learning grows across the industry. We’re happy to see that the ONNX Runtime Machine Learning model inferencing solution we’ve built and use in high-volume Microsoft products and services also resonates with our open source community, enabling new capabilities that Read more
This post was co-authored by Jithun Nair and Aswin Mathews, members of technical staff at AMD. In recent years, large-scale deep learning models have demonstrated impressive capabilities, excelling at tasks across natural language processing, computer vision, and speech domains. Companies now use these models to power novel AI-driven user experiences across a whole spectrum of Read more
ONNX Runtime now supports building mobile applications in C# with Xamarin. Support for Android and iOS is included in the ONNX Runtime release 1.10 NuGet package. This enables C# developers to build AI applications for Android and iOS to execute ONNX models on mobile devices with ONNX Runtime. ONNX Runtime is the open source project Read more
We are introducing ONNX Runtime Web (ORT Web), a new feature in ONNX Runtime to enable JavaScript developers to run and deploy machine learning models in browsers. It also helps enable new classes of on-device computation. ORT Web will be replacing the soon to be deprecated onnx.js, with improvements such as a more consistent developer Read more
With a simple change to your PyTorch training script, you can now speed up training large language models with torch_ort.ORTModule, running on the target hardware of your choice. Training deep learning models requires ever-increasing compute and memory resources. Today we release torch_ort.ORTModule, to accelerate distributed training of PyTorch models, reducing the time and resources needed Read more
This post was co-authored by Jeff Daily, a Principal Member of Technical Staff, Deep Learning Software for AMD. ONNX Runtime is an open-source project that is designed to accelerate machine learning across a wide range of frameworks, operating systems, and hardware platforms. Today, we are excited to announce a preview version of ONNX Runtime in Read more
This post was co-authored by Alejandro Saucedo, Director of Machine Learning Engineering at Seldon Technologies. About the co-author: Alejandro leads teams of machine learning engineers focused on the scalability and extensibility of machine learning deployment and monitoring products with over five million installations. Alejandro is also the Chief Scientist at the Institute for Ethical AI Read more