Skip to content

Microsoft Quantum

Recent Posts

Common framework for scientific experiments: QCoDeS 

  QCoDeS is an open source data acquisition framework that was created by distilling the homegrown solutions used in Station Q’s experimental labs, and infused with all the best practices from the open source software world. It includes a simple syntax to define complex sweeps over n-dimensional parameter space, all the machinery required to visualize...

Read more

Transport signatures of quasiparticle poisoning in a Majorana island 

As its name implies, the poisoning of Majorana devices by normal electrons is fatal to topological computation, so much effort is now focused on characterizing the degree of poisoning either by the creation of quasiparticle pairs within the device, or by electrons entering the device through the leads. A recent experiment (see https://arxiv.org/abs/1612.05748), led by Sven...

Read more

A clear view of emerging and hybridizing Majorana zero modes using epitaxial InAs-Al nanowires 

  The first signature of Majorana physics, identified experimentally at TU Delft in 2012, focused on a characteristic conductance peak at zero voltage. It bore many signatures of Majorana zero modes, but had a sizable background signal that obscured how the peak arose out of coalescing Andreev bound states. Recently, Mingtang Deng and a Station...

Read more

Normal, superconducting and topological regimes of hybrid double quantum dots 

  Majorana devices will generally be much more complicated than the single-junction or single quantum dot Majorana devices that have been realized in the literature so far. (See https://arxiv.org/abs/1610.05289 by the Station Q team for examples of complex devices.) Recently, a first step toward complex multi-gated Majorana devices—a Majorana double quantum wire—was realized by Daniel Sherman and...

Read more

Anomalous Fraunhofer Interference in Epitaxial Superconductor-Semiconductor Josephson Junctions 

  Last year saw a materials breakthrough, with the realization of a two-dimensional heterostructure combining superconductor and semiconductor layers. (See journals.aps.org/prb/abstract/10.1103/PhysRevB.93.15540.) Now, as shown in a recent report, this material has been used to study interference effects controlled by magnetic fields in a Josephson junction made from this material. Anomalous interference reveals properties of the semiconductor in...

Read more

Verified compilation of space-efficient reversible circuits 

  Generation of reversible circuits from high-level code is an important problem in the compilation flow of quantum algorithms to lower-level hardware. The instantiation of quantum oracles in particular will require mapping classical circuits to a reversible implementation. Existing tools compile and optimize reversible circuits for various metrics, such as the overall circuit size or the...

Read more

Double semions in arbitrary dimension 

  In the paper, “Double semions in arbitrary dimension,” published in Communications in Mathematical Physics, Michael Freedman and Matthew Hastings present a new construction of topological phases of matter in higher dimensions, generalizing the double semion theory in two dimensions. This theory is distinct from the Dijkgraaf-Witten model and generalized toric code models. Read the published version....

Read more

Training a quantum optimizer 

  In this paper, published in Physical Review A, we show how to greatly improve success at solving Constraint Satisfaction Problems on a quantum computer by using a learned schedule, instead of the standard linear ramps. The technique actually improves as the problem gets larger and more difficult, allowing classical machines to learn optimizations that...

Read more

Triple point topological metals 

  Topological materials can yield quasiparticles that behave in a manner similar to elementary particles that are part of the standard model of particle physics. In this paper, published in Physical Review X, we report on a new class of such quasiparticles—triple point fermions—which represent fermions that have mixed properties of Dirac and Weyl fermions....

Read more

Direct from the 2016 Quantum Retreat in Redmond 

  The 2016 QRetreat took place on Microsoft’s Redmond campus on April 28 and 29, 2016. QRetreat is an annual meeting of the Station Q Santa Barbara and Station Q Redmond teams. The goals of the meeting are to update each other on the recent research in an informal atmosphere and discuss current projects. This...

Read more