The Microsoft approach to quantum computing 

3 min read

From development to deployment, Microsoft is empowering the quantum revolution with a complete approach to quantum systems. Highlighting our focus on scalability and outlining the full quantum stack—including control system, software, development tools, and Microsoft Azure integration—this post illustrates how our approach creates an integrated, streamlined environment for quantum processing. Read more

Achieving practical quantum computing 

<1 min read

To gain a broader understanding of quantum computing, check out this comprehensive overview from Microsoft Quantum Architect Dave Wecker. You’ll learn how quantum computing is different from classical computing, the types of problems a quantum computer can solve, and what makes topological qubits so unique. Read more

Announcing the Microsoft Quantum Development Kit 

1 min read

Just a few months back, Microsoft CEO Satya Nadella shared our vision of empowering the quantum revolution with bold investments towards a scalable end-to-end solution, revolutionary topological approach, and a global team. Today, we take the next step in this journey with the Microsoft Quantum Development Kit to help you get started with quantum development. The Microsoft Quantum Development Kit, preview available here, includes the following three key components: Fully integrated quantum-focused programming language Q# (Q-sharp): Designed ground up for quantum, Q# is the most approachable high-level programming language with a native type system for qubits, operators, and other abstractions. Read more

Microsoft announces quantum computing programming language 

2 min read

For more than a decade, a team of researchers, engineers and developers at Microsoft has been working on quantum computing, a new model of computing that promises exponential increases in processing power and could help scientists tackle questions previously considered unanswerable—on topics ranging from climate science and medical research, to the human genome and economics. Read more

Elucidating reaction mechanisms on quantum computers 

1 min read

    We show how a quantum computer can be employed to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical-computer simulations for such problems, to significantly increase their accuracy and enable hitherto intractable simulations. Detailed Read more

APS Physical Review Letters selects Station Q paper 

1 min read

  We are pleased to announce that the American Physical Society (APS) journal, Physical Review Letters, has selected the Station Q paper, Transport Signatures of Quasiparticle Poisoning in a Majorana Island, as an Editors’ Suggestion. The paper details how, working with theorists in Copenhagen, we found a way to measure the quasiparticle poisoning rate of a Majorana Read more

Magic state distillation with low space overhead and optimal asymptotic input count 

<1 min read

  In our quest for topological quantum computing with Majorana zero modes, one missing piece is the efficient, high-quality creation of magic states to perform the π/8 (or “T” gate). Our new paper, Magic State Distillation with Low Space Overhead and Optimal Asymptotic Input Count, provides a family of solutions to this need, allowing for a wide range Read more

Design automation and design space exploration for quantum computers 

1 min read

  A major hurdle for quantum algorithms for linear systems of equations, and for quantum simulation algorithms, is the difficulty to find simple circuits for arithmetic. Prior approaches typically led to a large overhead in terms of quantum memory, required operations, or implementation error. By leveraging recent advances in reversible logic synthesis, Martin Roetteler and Read more